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Abstract

The driving forces for a generally oriented crack embedded in a Functionally
Graded strip sandwiched between two half planes are analyzed using singular integral
equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation.
Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are
calculated. The Stress Intensity Factors are compared for accuracy with previously
published results. Parametric studies are conducted for various hon-homogeneity ratios,
crack lengths, crack orientation and thickness of the strip. It is shown that the SERR is
more complete and should be used for crack propagation analysis.

1. Introduction

One way to reduce the residual stresses in composites is to process fully tailored
materials and interfacial zones with predetermined continuously varying mechanical
properties. Such materials are known as Functionally Graded Materials (FGM) (see
Asish et. al., 1997 and Holt et. al., 1993). Some FGM could be described as two-phase
particulate composites where the volume fractions of its constituents differ continuously
in the thickness direction (see Niino and Maeda, 1990; Hirano and Yamada, 1988; Hirano
et. al., 1988; and Kawasaki and Watanabe R., 1990). This implies that the composition
profile could be tailored to give desired thermomechanical properties. One of the most
important of these properties is the minimization of crack propagation. In order to design
FGM components, then, the driving forces of crack propagation must be fully
understood.

The problem under consideration here is that of a generally oriented crack embedded
in a nonhomogeneous strip sandwiched between two isotropic half planes. A system of
singular integral equations with Cauchy kernels is used to analyze the driving forces
(Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR)) of crack
propagation.

The present work is a generalization of a sequence of papers (Delale and Erdogan
(1983), (1988a), (1988b), Konda and Erdogan (1994), and Chen and Ergodan (1996))
concerning driving forces of crack propagation for problems involving various boundary
conditions and crack geometry. In these papers, an exponential variation in material
properties within the FGM is assumed, and it is shown that Poisson's ratio has little effect
on stress intensity factors. Therefore, in the present formulation, the same Poisson ratio
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is used in all three materials, while the shear modulus has an exponential form. Also,
these papers considered only horizontally oriented cracks, while the present paper
addresses a crack with arbitrary orientation angle.

The solution methodology follows the basic steps presented in the previous papers.
Specifically, the problem is cast in perturbation form. First, the crack surface tractions
are computed for an FGM embedded between the two half planes with given far field
stresses when no crack is present. In the second step, these tractions are used to compute
the stresses at the crack tips for the perturbation problem. These steps are depicted in
Figures 1b and 1c. In order to account for the arbitrary orientation angle, the perturbation
problem is separated into two parts, depicted in Figures 2b and 2c. The first part includes
the influence of the interfaces, and the second part examines the crack in an infinite
FGM. Details are shown in the next section.

2. Formulation of the problem

The geometry of the problem is shown in Figure 1a. The two dissimilar materials,
which are perfectly bonded to the FGM, are isotropic and homogeneous, the FGM has a
finite thickness h, and is denoted as Material 2. Material 1 occupies the lower half plane,
for y < 0, while Material 3 occupies the upper half plane for y > h.

In global coordinates (x,y), the shear modulus of the FGM is assumed to be as
follows:

Ky (y) = the” (1)

and in local coordinates {¥1) as:
Hy (%, ¥;) = py €770 (2)

where

y = im(&)

h "
0 =ycosf) 3
B =ysin©)

Hooke’s law relates strain and stress using two independent material constants:

» =§[(K +1) 0, +(k-3)0,]

e, :é[(x 30, +(k+1)0,,] @)
1

Sxy :—Txy
24
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where the bulk modulug, is defined as,

k =3-4v for planestrain (5)
or
K:3;V for  planestress (6)
1+v

The solution strategy is shown in Figures 1b and 1c. The governing equation for the
half plane is

I'R(xY) , ,9'R(xY) , IR(XY) _,

7
ax axay* ay' @

The solution of (7) is found by applying the Fourier Transform:
R(xy) = [V(a, y)e ™ “da (8)

and solving the characteristic equation

y* dy’
O m*-20’m*+a*=0 9)

O m =m;=la| &m, =m, =-a

a’V -2a? 0

so that,
R(x.y) = i}[(m(a) +yD, (0))e”” +(D3(0) +yD,(@)e ] e*dar (10)

Due to the condition of irregularity at y<O (the stress function vanishgs-as»),
Ds(a) and Dy(a) must be zero, therefore

F.(4 ) = [[(Dy(@) + YD, (@)e] e dar (11)

Similarly for Material 3, the application of the condition of irregularity at y>0 yields
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() = [Cy() + G (@) e (12)

The solution strategy of the perturbation problem is shown in Figure 2. The Airy
stress function method is adopted in this study, mainly for making use of the technique
developed by Delale and Erdogan (1988). It is assumed that the Airy stress function for
the FGM is composed of two functions; one is associated with an infinite plane
containing the crack on the-axis, W(x1,y:) (see Figure 2c), while the second is an
uncracked strip, £x,y) (see Figure 2b).

The governing equation in the global coordinate system is

O K,-3 [ 0
0%(o,, +0,,)+VY° +—2 ~o,r+2y—(0, +0,)=0
(0 tOy)+Y %Ixx 10 vay( o t0y) s
[B°F,(x,y) K,-30°F,(x,y)O . 9
O O'R(X,Y) + Y 22 + 2 23 2y—D%F,(x,y) =0
2( y) y D ayg K2+1 axg EI_ yay 2( y)
The characteristic equation of (13) is
m4—2ym3+(y2—20(2)m2+2y0(2m+(0(4—0(2y2K2—:i’):0 (14)
K2
Four roots of (14) and the stress function are obtained in the following forms:
2 —
m, =Y - a®+L +iay 37Ky
2 4 K, +1
2 —
m2:X+\/a2+y—+|ay 37K,
2 K,+1
(15)
2 —
m, =Y - Ja2+Y —iay 37K,
2 4 K, +1
2 —
m4:X+ 0(2+y——|0(y 3K,
2 4 K, +1
O R(xy)= 2i JTAL(@)e™ + A, (0)e™ + A (0)e™ + A, (a)e™] e"“da (16)
T[—oo

The governing equation in the local crack coordinate system is
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0 0
D4U2(X1’y1) - Zéw(DZUZ(Xl,yl)) - ZBa—(DZUZ(Xl,yl)) +

1 1
2 2 2
8Bd 0 Uz(xl,yl) [ ( -30 Uz(le,yl)+a Uz(le,yl))+ (17)
1+k, 0x,0y, 1+Kk, oy, 0X;
62(62U2(X1’y1) + K2 _36 UZ(Xl’yl)) - O
ay? 1+K,  0x?

The characteristic equation of (17) is

n* -2n° +E32K2—_3+52 —20((iB+0()§12 +0(6E£i +20(E7
K, +1 K, +1

(18)
24,2 23-K, ; —
+a E} +0 —+[3(2|0(—[3)E—0
K, +1
The four roots of (18) are
_1 +B/3 KZE \/ 3- K2 +4(0( +'°‘E3 5 3—K2E
K, +1 K, +1
nzzl -B 3-Kkpp 1 -B 37K, +4(a’ +ia[B+d 3_K23
2 K,+1H 2 K, +1H K, +1
- — - (19)
nszl +B 3-kop, 1 +B 37K, +4(0 +ia[B-d 3_K23
2 K,+1 2 K, +1 K, +1-
n4=1 -B 3-kop, 1 -B 37K, +40” +ialB+8 3_K23
2 K,+1 2 K, +1n K, +1

By examining the roots carefully, it can be noticed thatnd n are always negative
asa -+, while 3 and n are always positive as— +c. This implies that the stress
function can be expressed in the following form:

Us (4 34) = - [[B(@) e +B,(@) €] &7 dla Y, >0
o (20)
1 P n. n X0 .
Uz(xl,yl):%_[o[&(a)e”l+B4(a)e4y1] e da, y1<0
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Two constants in the system of equation (20) can be determined by application of the
continuity of stresses ai30, as follows:

0U,(x,,0%) _ U, (x,,07)
oy, oy, (21)
U,(%,,0") = U,(x,,0)

n,-n,

n,—n
0 By(a) =——=B,(a)+——*B,(a)
4 3 4 3 (22)
n,—n n,—n
B,(0) =2 2B,(a)+ 2~ *B,(a)
4 3 4 3

The general forms of the stress functions used to generate the stress components due
to each problem have been obtained. Next, formulate the stresses for the infinite plate
with a crack by differentiating the stress function(B, and B are still functions o#):

0,0, (% ¥0) = o [[NEB™ +niB,e] &cl
7T—00
+ -17 n n X0
Oy (% YD) = P [a’[Be™ +B,e™"] e*da
- 1 P n n X0
0, 00 ¥5) = [IREOWB, + WB,)e™" + i (Wi, + w,B)e™] & (23)

- __1 p N n X101
O-ylyl(UZ)(Xl’ W)= J.az[(vlel +Ww,B,)e™”" +(w,B, +w,B,)e""] €*“da
21T )

L Tl U e ORI e W

W 1V 13 4
n,—n, n,—n,

n;—n, n—-n,

The singular integral equations for this class of problems are formulated in terms of
two auxiliary functions:

fl(xl) = 9 [ul(xl’0+) - ul(xl’o_)]
0x,
(24)
fz(xl) = 9 [Vl(xl’OJr) _Vl(xl’o_)]
0X,

Notice that the auxiliary functions are valid for anybut are nonzero only within the crack (a, b).
Using Hooke’s law for the stresses given by (23), local strains and displacements can

be calculated. For example,
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00 = o [l TR 4B

-a (K2 -3)(B,e™" + B,e"™")]e™da

(25)
000 = g s+ DB+ B+ (B + B )E)
-a (K2 =-3)((wB, + w,B,)e™" + (wW,B, +w,B,)e")]e*" da
Using (25) and first equation of (24) it can be shown that
811,6™ f,(x,) = Z—Zi(xz +D[(n? - nZw, - nwy)B, o6
+(nZ —nw, - njw,)B,]e™ da
The Fourier transform of (26) yields
Fi(a) =h,B, +h,B,
= )
e = 220, -nu)(n, -n,) @)
L,

b
Fu@) = [ £, "dt

In order to determine(x,), it is necessary to find v{}1) by integrating the normal
strains in the y direction:

5B e + B,e™" )™ da

V0¥ = g ks - )—j(

b~

enlyl +

1 )
=3 B,e™")e™ da]

-(k, +1)—Ia (

2

and (28)

o0 2
n .
3en3Y1 + 4 B4en4)’1 )e'xla da
n, -

VX, y1) =g - [(K - )—

B,e"")e™" da]

B4en3Y1 + 1
n, —

—(K2+1)5Tja2(n -
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The constant of integration can be set to zero due to the fact that the plate is fixed at
the origin. Differentiating (28) and substituting into second equation of (24), then taking
the Fourier transform yields

F,(a)=h,B, +h,,B,

_ia=-B, _ 52 _ (nl_nS)(nl_n4)
My = g @0 0) =806 = S

_ia-pB, , 52 _ (nz _ng)(nz _n4) (29)
=1 W) 07, =g T B ]

b
F@) =] f,(t)e’ " dt

Equations (27) and (29) can then be solved foaril B:

— F(a)h,, —F,(a)h,,
h;;hy, —=hyhy,
—_ F.(a)h,, +F(a)hy,
h;;h,, —hyhy,

Bl
(30)

BZ
The stresses at any given point in the cracked FGM strip can be expressed by the
sum of stresses obtained from theddd Fk Airy stress functions, namely:

(F2)

03?00, 1) =01 0, y) + (P () for (1§ =%, 1) (31)
These are expressed in (X,y) of,Yx) coordinates using the regular stress transformation:

b,0 O n* -2mndb, O
0 d_0O, 2 > o
Ep-yyl:| |jq m mn [Wylyl O (32)

ETXYE Eﬂn —mn mz—nz%xﬂlg

m = cosP);n =sin@)

thus the stresses for the FGM are,
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2)

17 i
a2 (x,y) = ETJ'[mfAle’“ly +m2A.e™ + miA.e™ + miA,e™ e*dua

+COS@)22i J.[nJZ_B]_enlyl + n;Bzenzyl]eixlada
.’-[—00
i 2 1 ¢ 2 ny. N,Y1 14X
_SIn(G) 2— J'q [Ble W1 Bze 2 1]e da
-'-[—00
+2sin() cos@)zi J'ia[nlBlenlyl +n,B,e"" e da
T[—oo
O(y? (x,y) = ‘zi IGZ[Alemly +Ae™ +A ™ +A,e™]e*da
T[—OO
+Sin@)? L [[nfB,e" + 78,6 ] o
T[—oo
2 1 p 2 ny. n,y. ixa
- C0sP) 2_.[0( [B.e™" +B,e"™] e*da
T[—oo
—2sin(®) cos@)zi J'ia[nlBlenlyl +n,B,e"™] e da
T[—oo
Tg(i) (Xa Y) = —Zi J'i(x[mlAlemly + mzAzemzy + m3A3em3y + m4A4€m4y] eixo(da
T[—OO
+Sin(9) COS@)%TJ‘[nfBlemyl + nngenzyl] eixlada

+ S|n(e) COS@) i Ia Z[Blenlyl + Bzenzyl] eixc( da
2mJ,

- (c0s6)" ~sin@)*) o~ [ia[n,B,e"" +n,B,e""] &*da

(33)
The stresses for Material 1 are
00 = [l0°(0, + YD)+ 200,16
21mJ
1 ( o X0l
Oy (X,Y) ==—— I[O‘Z(Dl +yD,)] e*’e*da (34)
ZAIER

Yy

1 °°. a iXa
Ty (X,Y) =‘E[J'|0([|O(|(D1+VD2)+D2] eV e*dq
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and for Material 3 are
o (6 )= 1 J’[a (C, +yGy) - 2aC,Je e dar
e j[a (Ci+YC,)le e da (35)
T (xy)=—-— J’la[ —a|(C, + yC,) +C,Je e da

From (33), (34) and (35), it can be seen that there are 10 constgnis, O;, C,,
A1, Ay, Az, A4, By and B (still are functions ofx in the Fourier space) which must be
determined using 10 boundary conditions. There are eight stress and displacement
continuity conditions:

a$)(x,0) =2 (x,0)
gl (x,h) =2 (x,h)
T4 (x0) =72 (x,0)
T (x,h) = r(z)(x hy for -cw<x<ow
u®(x,0) =u®(x,0)
u®(x,h) =u®(x,h)
v® (x,0) = v? (x,0)
v (x,h) =v® (x, h)

(36)

From (36), the other constants can be expressed in termsaoidE3, which in turn
are expressed in terms of the two unknown auxiliary functions. The remaining two
boundary conditions come from the perturbation problem, namely,

JY1Y1 (Xi’o) == pl(xfl_) for a< X:I. < b

(37)
Ty (%0) ==py(x)  for a<x<b
Here, p and p are the traction forces on the crack surfacgs.0p, C; and G are
found in terms of A Ay, As, A4, B1 and B by using the stress continuity conditions of
(36). Further, by using the displacement continuity conditions of (36), the following
linear system can be constructed:
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11 C C C D]:Al EUl H
21 C22 C23 C24 2 BJz H
c o c =00 (38)
31 32 33 34 3[] 3]
a1 C42 C43 C44 4 @4

where D, D,, G, C,, Ciithrough Gsand Jthrough J are functions ofx derived using
MATHEMATICA, see Shbeeb (1998).

The system of equations (38) can be solved fgr (i¥1,..,4) in terms of the
unknowns k{a) and k(a), which are components qf §i=1..4) as follows:

I:IEI:H:I

AL T ARE R

A= Z =, i=1..4 (39)

Here, Q is the determinant of the 4 by 4 coefficient matrix and ther® the
corresponding 3 by 3 cofactors.

To make use of (37), the stresses of the FGM must be formulated,ya) (X
coordinates as

17 '
(2) - _ 2 ny 0y -
Oylyl (Xl’yl) - 2T[ Ia (Ble V1 + BZe 2 1) e 1 da

P (40)
+iﬂ (m, sin®) +io cos@))?A e™'] e**da
Tg(f))/l( 1’yl) = _Zi_,_[].;ia(nlBlenly1 + nZBzenzyl) eixlada
"o _[[ ((a? +m?)sin(8) cosg) (1)

e N=

+iam, (cos@)’ -sin@®)*))A, e™"] e*da

Each term in (40) and (41) must be examined for singular behavior. Upon
substitution of (30), (27) and (29) into (40), the first integral above can be written as
follows:

YY1

1° 1°
(02 (x,y )™ = 5 j f,(t)eP kS (x,, t)dt > j f,(t)e"kS (x,, t)dt (42)

where
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® ny: _ n2y:
K8 (¢, = [or N2€ 7 Mo oot (43)
LA h11h22 - h12h21

1 ® h enlyl _ h e“z)’l
kg) (Xl,t) =_J-a2 ;]1 - h12h
=, 111122 7 Hyollyg

gt gy (44)

Since the integrands are continuous functionsx dind vanish ati=0, then any

singularity must occur ag goes to infinity. The integrand of (43) vanishesxasto,
while that of (44) is as follows:

My _ MY, - Oy
h,e hy,e - ( hyy —hy, )e‘\“\yl - 1—22|e a - too
hy1hy, = hyphyy hy;hy, = hyphyy a“(k, +1

By subtracting and adding this asymptotic value from (44) and taking the limit as y
goes to zero, the following is produced:

h,, —h,, B 2i
hzz - h12h21 az(Kz +1)

1.9 o
(@) - = 2 ia(x;-t)
Kiz (X1, 0) = L a (hll )™V dor +

(45)
p 2 h11 B h12 2 io(x,-t)
J’a ( +— ) Pda + SIP|
0 h11hzz - h12h21 a (Kz +1)
where
0 2jg™: ® 2@ W1
SIP= lim ( I—z'e et g - I—z'e eV dq) (46)
y1-0 _M(Kz +1) 0 (Kz +1)
Leta'=-a in the first integral in (46) to obtain
4 fim (e sin@(t-x,)da = -+ fim X1
(K2+1) ylﬂoo (K2+1) yl*o(t_xl) ty:
(47)
__ 4 1
(Kz +1) t—X,
and
0 _ . .
0 k;(LJé) (Xllt) = E[IGZ( h11 h12 -— 2 )em(xl_t)da+
LIS h11hzz - h12h21 a (Kz +1) 48)

J-az( h, —hy, +— 2i )eia(xl—t)da 4 ]
0 hyh,, =hph,,  a(k, +1) (K, +D) t=x,;

NASA/CRO 1999-209166 12



Similarly, leta’=-a in (48). Note that every odd powereabecomes negative

1° Hyy —Ho, h
0 kg2 (x3,1) = —[_[{0( =

n 0 H11H22 H12H21 hlIhZZ
Hu-H, ,  hy=hy,
H

h th]COS©((t ~Xy))

+ia?[ (49)
Hll 22 H12H21 hlthZ h12th
) 4 1
- sin(a(t — x,))}da —
(K, 1)] @(t—x,))} (K2+1)t_xl]

The H; (i, j =1,2) have the same forms as thevith the only difference being in the
sign of the odd powers of where they are negative. It is worth noting that:

Hy,—H,, — conjugat'ﬂ h11 B h12

€ ) (50)
H11H 22 H12H21 h11h22 - h12h21

Repeating the same procedure for (43) by splitting the integral in the same manner as
in (48) and substituting the result along with (49) into (42) yields the following:

@ o_me™ 4 LM 1
lim(ay,, (. 1)) > [n(K2+1)at—x1dt+ If(t)Kn(Xl t)dt

, (51)
+ 2 [ 1,OKE (Dt
r[ a
where
K (X, 1) = —_[{0( [X; +confX,,)]cos@(t - X,))
+ia’[-X,, +confX,,)]sin(@(t — x,))}da
K x3,8) = ~[{[X,, + CON(X ) cos(t - x,)
N | L (52)
+io’[-X, +confX,,) ————]sin(@(t - x,))}da
a“(k, +1)
— h22 B h21
Xll B (h11h22 - h12h21)
— h11 B h12
X12 B (h11h22 - h12h21)

The same procedure can be repeated for the first part of the shear stress (41) to
obtain
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ulel[ 4 b1‘(t)
2 nk,+1D)It-x

lim (£, (%, y,))" = jf (OK3,(x, )t

: (53)
# [ 1, OKE 06, e
7-[ a
where
K3 x,,8) = ~[lialX , -~ conX )] cosi(t - x,)
+a[X 5, +CONX 1) +—— 2 sin(ai(t - x,))}da
a(k, +1

K% (x,,8) = ~[{ialX ,, ~con(X )] costa(t ~x,)) 4

+a[X,, + con(X »)]sin(@(t —x,))}da
n1h22 B

X1 =( o)
- hyhy, = h12h21
X, = ( n,hy, —nshy, )

hllh 22 h12h 21

The examination of the remaining two parts of the stress equations (40) and (41) and
application of the asymptotic expansion and the limit agjoes to zero yields the
following terms:

YiY1

im0 06,y =B | o] HOKE (%t + jf (OKS (x,.0dt]  (55)

ulel 1°

fim (@35, 06, Y = 20— [ ROKL 06 + jf (DKD (x,)dl]  (56)

where
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Kip (%,1) = JlYs, +coni(Y,,)] cosr cos@)(t - x,)]

+i[-Y, +conj(Y,,)]sin[a cosP)(t — x)]} da +
(2811(Xf sin@)” —cos@)” (t —x)°) +4by, (% (t - x)sin@) cosp)) ,
(xsin@)” +cosB)’(t - x)*)°
2¢,,%,8in@) + 2d,, cosP)(t - Xl))
X sin@)” +cos@)*(t - x)*

K (4,1) = [{[¥; * coni(Y,)]cosfr cos@)(t - )]

(57)

+i[-Y, + conj(Y,)]sin[a cos@)(t - x)]}da +
(2812(Xf sin@)” —cos@)” (t = x)°) + 4y, (%, (t - x)sin@) cose))
(xsin(@)” +cosP)’(t -~ x,)*)*
2¢,,% sin@) + 2d,, cosP)(t - Xl))
X sin@)” +cosP)*(t - x,)*

KD (4.1) = (1% * conit )] cosfrcos@)(t - )]

+i[-Y,, +conj(Y,,)]sin[a cos@)(t - x,)]} da +
(2a11(X12 sin@)® —cosP)*(t — x)°) +4hy, (% (t — x)sin@) cosh)) +
(%’ sin@)* +cos@)*(t - x,)*)*
2c,,% sin@) +2d,, cosP)(t - Xl))
X’ sin@)* + cosP)>(t — x)?

K3 (4,1) = [{I¥%, + coni(, ) cosir cos@)(t - )]

(58)

+i[-Y;, + conj(Y,)]sin[a cos@)(t - x)]} da +
(2a12(X12 sin@)” —cos@)” (t — x)°) + 4y, (x,(t - x)sin@) cosp))
(' sin@)” +cos@)’(t - x)*)°
2¢,,% sin) + 2d,, cosP)(t - X1))
X sin@)” +cos@)”(t - x,)*

where Y g;, by, G; can be found in Shbeeb (1998).
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By substituting these expressions into (40) and (41), the final system of singular
equation is formulated'

SR = (”dt+— S PCIACRES jf (0K,204.9)
Hy (t) o (59)
K, _
2111 Bx( pz 1)) _I—dt+_If (t)K21(X1’t)+_If (t)Kzz(Xlit)
where,
KXy, f)=—2 - (K(l) (X1, 1) + K{P (x,1)

Kip(x,,1) = ZT(K“) (3, ) + K2 (x,,1)

K
Ko (Xy,t) = 2

1 1

K
K (X, 1) =

1 1

3. Solution of Singular Integral Equations

The singular integral equations (59) with the Cauchy kernels are solved for the
unknown auxiliary functions,t) and §(t), by transforming them into a system of linear
algebraic equations. In order to obtain unique results, the following conditions need to be
incorporated with the solution:

Jb'fi (t)dt=0 i=12 (60)

The singular integral equation (59) can be solved using Gaussian quadrature. For
example, using Lobatto-Chebyshev collocation as described in Theocaris and loakimidis
(1977), we obtain the system of algebraic equations in terms of discrete unknayns g(t
in the following form:

Z%ZM > 3 Ky (%,88, 0+ R (%) = f(x) (61)

t = X,

where p=1,...,n, the ware the weights, the abscissasire the roots of the related
orthogonal polynomial, and.Rs the error. The abscissas are
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t, :cosw) k=1...,n (62)

n-1
The corresponding weights are

wo=w o= = r=2,..,n-1 (63)
2(n-1) n-1

The collocation points are

xp:cosw) p=1...,n-1. (64)

2n—-2

Two additional equations are needed, which are generated using (60) in the
following form:

Zgl(sowk =0 (65)

Zgz(sk)wk =0 (66)

By combining (61), (65) and (66), the system of equations can be represented as follows:

[ALneniahs, ={Phs (67)

This system can be solved by any standard method. Formally, the unknowns are

{o}=[A]"{P} (68)

Finally, the goal is to obtain the SIF in terms gftgand g(t). The SIF are defined
as follows:

k,(a) = LimaMGylyl(xl,O)
ky(b) = Ixilrpb J2(x -b)a, (%,0)
ky(a) = lei[naJZ(T—xl)rxlyl(xl,O)
ky(b) = lxirjlb J20x = b)T,,, (%.0)

(69)
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From the principal part the expressions fdt)gand g(t), Muskhelishvili (1953)the
following is obtained for Ka):

22y,

—_ N om
k,(2) K.+ e 9,(a) (70)

Similarly,

k,(b) = —+—eﬁ°gz(b) (71)

e”g,(a) (72)

2\/_11 _ aNely
(K, +Dvb-a

Note that a=-1 and b=1 when solving (68).
The strain energy release rate (SERR) can be calculated from Erdogan and Konda
(1994). They are

k,(b) = - g, (b) (73)

7T(K2 D
84,(a,0)

7T(K2+1)
84,(b,0) L0

7T(K2+1)
H,(a,0)

e 23
G.(0) =g, 75 o)

G (a) = k,(a)’
G,(b) =
(74)

G,(a) = k.(a)*

where G is the opening mode SERR and i& the sliding mode SERR. The total SERR
is expressed as

mﬁ;%um+k@)

n(k, +1)
W(k 1(0)? +k,(b)?)

G (a) =
(75)

Gy (b) =

The verification of the solution above is accomplished by comparing the results of
this model with that of Erdogan and Konda (1994). In this model, h is settto
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simulate an infinite FGM plate, with various values/of The two models give virtually
identical results, as seen in Table 1. ko0 (the homogeneous case), the singular
integral equations can be reduced to a closed form solution (see for example Tada et. al.
(1973)) producing SIF proportional to normal and shear tractions applied on the crack
surface.

4. Parametric Studies

The focus of the following parametric study is limited to investigating the influence
of the material properties of the half planes, crack length and orientation, and thickness of
the FGM interface on the resulting driving force as measured by the SIF and SERR. To
accomplish this, the normalized honhomogeneity congtantin(us/,) is defined using
(3). The range of the constant is assumed to be between -3 and 3, which includes all
known engineering materials. A negatiferepresents a problem where the bottom half
plane is stiffer than the upper half plane. A positlaeepresents a problem where the
upper half plane is stiffer than the lower half plane. Hence, if the shear moduli of all
three phases are normalized with respecfutothe equivalent variation of the shear
modulus of the upper half plane takes values of approximately 0.05 to 20 times the lower
half plane shear modulus.

In this study, all the cases were considered under plane stress conditions with
Poisson’s ratio = 0.3 and the materials were subjected to far field normal stress in the y
direction. The length of the crack is chosen to be 2c, and the thickness of the interface is
h. All geometrical dimensions are normalized with respect to ¢ or h. Results are
presented for the normalized mode-l and mode-ll SIF, i.gko kand k/k,, and
normalized SERR, i.e., 5, and G/Gy, where § =ayy (c)*>and G = k’Ti(k+1)/ 81;.

In the first study, consider the influence of the thickness of the interface h/c and non-
homogeneity constagh = In(ps/pa) on a crack inclined at 30 degrees such that the center
of the crack is always kept in the middle of the interface. The distances a and b from the
crack tips are the same from the lower and upper half plane, respectively.

Figures 3 and 4 show mode | and Il of the normalized SIF at crack tip a versus the
non-homogeneity constant [i(u;). Observe that as Ing/l;) increases, both;kand k
decrease. The strongest effect is observed for the smallest thickness of the interface,
while h/c = 100 may be considered as an infinite FGM plate, for which the SIF are
virtually constant. When Ipg/p;) = 0, the plate is homogeneous, so the influence of the
thickness of the interface disappears and the SIF become the same as for the infinite
FGM plate.

Figures 5 and 6 represent mode | and Il normalized SIF at crack tip b versus
In(us/p1). The SIF curves increase with increasingudfi(z), which is different from the
behavior at tip a, except for the case of the infinite FGM plate. In addition to this
behavior, the magnitude of the SIF tends to be higher at crack tip b than at tip a,
especially for extreme values of [la(;).

Modes | and Il of SERR are shown in Figure 7 and 8 for crack tip a and in Figure 9
and 10 for crack tip b. Notice that at both tips, SERR are decreasing with increasing
stiffness of the upper half plane. Specifically, SERR at crack tip b behaves differently
from the SIF at this tip. The behavior of SERR is more physically intuitive than the
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unexpected behavior of the SIF. It should be recalled that the SERR is calculated using
SIF and local material properties, so it contains more information than the SIF. For this
reason the remaining parametric studies are discussed using only SERR data.

The influence of the orientation andleon the relation between SERR and the non-
homogeneity constant at crack tip a for the case of the interface thickness h/c=2 under
uniform shear stress at infinity is shown in Figures 11 and 12. As expected, the highest
mode-I SERR is obtained for the smallest angle because of the high normal traction
component acting on the surface of the crack. It can also be expected that the highest
magnitude mode-Il SERR is produced f6r45 degrees, since the shear traction
component is maximized then. The behavior of the SERR at crack tip b is similar to the
behavior at crack tip a, as can be deduced by comparison of Figures 7 and 9, and of 8 and
10. Hence, the magnitudes of the mode-l SERR at crack tip b are higher than at crack tip
a, while the magnitudes of the mode-Il SERR are smaller at crack tip b. In fact, the total
SERR at crack tip b is equal to the total SERR at crack tip a.

In the next study, assume that the crack orientation is 30 degrees from the horizontal,
and the thickness of the interface is h=1. Crack tip a is fixed at the distance a/h = 0.1
from the origin while crack tip b is at distance equal to b/h= 0.3, 0.7 and 1.1 along the x
axis, making the half of the crack length c/h = 0.1, 0.3 and 0.5, respectively. Modes | and
Il normalized SERR at crack tip b are shown in Figures 13 and 14, respectively. Notice
that the crack length significantly changes both SERR modes in the case of negative non-
homogeneity constant. For the case where the upper half plane is stiffer than the lower
half plane, the longer crack produces smaller normalized SERR.

Finally, assume constant crack length, constant orientation at 30 degrees and
constant thickness of the interface FGM h/c = 2, and examine the influence of the
position of the crack along the axis. Figures 15 and 16 show modes | and Il normalized
SERR at crack tip a versus the non-homogeneity constant for the crack defined by tip
positions varying from 0.2 to 1.6 from the origin. Notice that the largest modes | and I
SERR are obtained when a/c = 1.6 for negative non-homogeneity constant and when a/c
= 0.2 for positive Infs/p1). Hence, the closer the crack tip is embedded to the stiffer
material, the smaller the normalized SERR.

5. Conclusions

The analysis of an arbitrarily oriented crack in a strip of FGM sandwiched between
two isotropic homogeneous half planes is done using singular integral equations. The
equations are solved using Lobatto-Chebyshev integration, and give accurate results for
mix-mode SIF and SERR.

Parametric studies show that SERR contain relevant information that is missing in
the SIF, and therefore it is recommended that SERR be used as a driving force parameter
for fracture problems of a crack in FGM. The model has shown that SERR are sensitive
to the ratio of the shear moduli used as non-homogeneity constant. They are also
sensitive to the ratio of thickness to the crack length. The longer the crack or the thinner
the interface, the larger the SERR produced for negative valuespefulp( and the
smaller the SERR produced for positive values qiipg).
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The crack orientation influence shows that SERR is proportional to the traction
forces at the crack surface assumed in the perturbation problem. As the lower half plane
becomes stiffer (In(z/11) becomes more negative), both modes of the SERR become
larger for every crack orientation. Clearly, the proper selection of the FGM parameters
can reduce the driving forces of a crack embedded in the interface material.
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Table | Verification of the Solution.

yC Konda and Present Study | Konda and Present
Erdogan (1994) k,(a)/Vc Erdogan (1994) Study

ki(@)Nc ko(a)/Vc ko(a)/Vc

0.25 | 1.036 1.036 0.065 0.062

0.50 | 1.101 1.101 0.129 0.122

1.0 1.258 1.260 0.263 0.243

c=(b-a)/2
22
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APPENDIX A

EXPRESSIONS OF THE CONSTANTS

It should be pointed out that all the algebraic manipulation were either verified or
done by MATHEMATICA'.

Dl :Al +A2 +A3 +A4 +ng;L +gZB’2
D, =(m, —[a)A, +(m, —[a)A, +(m; —[a)A, +(m, -[a)A,
[ . i .
~(olg, 2B, - (olg; -2
C, =e“"[@-h(m, +[a))A,e™ +(@-h(m, +|a))A,e™"
+(1-h(m, +[a))A.e™" +(L-h(m, +[a))A &

ih ! _cnhsec ih 1 cn,hsec
33)8@ ihsecd) +(gz(1—h|a|)—%)82e shoecd))]

C, =€"[(m, +|a))A.e™" +(m, +|a)A ,&™" +(m, +[a)A ,e™"

+ eiahTan(G){( gl (1_ h|a|) _

i [
+ (m4 + |a|)A4em4h + e|orhTan(9){(|a|gl + %)B:lecnlhsece)

i I Cch,NSsec
+(lolg, +%)Bze shsech)y]

= C(;SZ@) (cn, —ia cos@)?)?
, = C(;SZ@) (cn, —iacos@)?)?

g, =cos@)*(asin®) —icn,)(a cosP) +icn, sin®))
g, =cos@)*(asin(@) —icn,)(acos@) +icn, sin(@))
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1 3-K,H 1 37Ky 2
cn1—§%+[3 K2+1§—E\/%+B K2+1§ +4((a cosP))“ +ia cosP) » +1@

+1

+1@

3_
%w Kztzlg+4((acos@))2+i0(cos@)§3 ; +1
Pl b,

L1
2 *1H 2 E
3-K 3-K
cn4:— -B ZH+1 -B 2 +4((acos©))2+iacos@)
2 K2+1E 2 Ko+ K +1§

B = Fl(a COSG))Chzz -k (a COS@))Chlz
’ ChuChzz - ChnChlz

B = B Fl(a COSG))Chzl +F, (a COS@))Chu
’ ch,ch,, —chy,chy,

1
ch,, = X272 (cn, —cny)(en, - cn,)

8,
K,+1
ch, = 82l10 (cn, —cny)(cn, —cn,)
ch = ia cos@) - B (@ cos@))2(1+ ) 62(K e (Cn1 - Cn3)(cn1 - cn4)
21 X 2" _ _ -
8/,1O (0 cnl)(5 cn3)(6 cn4)
ia cos@) - B 2 2 (cn2 - cn?))(cn2 - cn4)
h =—*— -J -
ch,, o ((acos@)"(1+k,) (K, 3))[(5 ~on )(3 - on )@ - on,)
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a 2
Cu= 2%”&(& +D) +a(k, -2k, -1) MK+ (Kaz 1)

o 2

Cp =2UI‘T’|2(K1+1)+G(K2 _2K1_1)_—mZ(K2 D
a a
a 2

C,= 2|O{—|mg(;<l +D)+a(k, -2k, -1 BRI B (’;2 D)

2
Ci = 2|g—|m4(;<l +1)+a(k, -2k, -1) _ Mk, *1)
(K2_3)mlz_az(K2+1)
m -y
_ 2 _ 2
sz:2mz(K1_1)_2|a|(K1+1)_(K2 Jm, —a (K, +1)
m, -y
_ 2 _ 2
Czs=2mg(K1—1)—2|a|(Kl+l)—(K2 Im; —a”(k, +1)
m, —y
-3m; —a®(k, +1)
m, -y

C,, = 2my(k, —1) - 2a|(k, +1) -

Cos =2m,(k; —1) - 2|CY|(K1 +1) - (K,

C. =[(2a(1-K,) - z%u k) +alk, -3) ——mf(';z e

Cs, =[(2a(1-k,) —2%”12(1+ Ks)) +a(k, —3) —@]eﬁbh

Cs =[(2a(1-ky) —2|Z—|mg(1+ K3)) +a(k, —3) —W]Gm

034 = [(20(1—K3) _2|a| m4(1+K3)) +CY(K2 _3) _@]em‘h

a

Can = [(dlr] + 2(k, ~1)(m, +[a)) - K2 ~DME - (K + 1) e

e

Coo = (4] + 2(k, ~D(m, +[a)) - {2 =DM =& (K * Dy
m, -y

Coo = [(4a] + 20k, ~1)(m, +]a)) - K2 =DM =071 * Do
m, -y

Con = (40| + 20k, - D(m, +a)) - &2 _1)T:2] __‘;2 (, + Dy
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b b
VERT| f,(t)ef'e’™0dt + R, i f,(t)e’'e’ O dt

S = ge(:hm B gschzz + 20(1_ K1)(92Ch21 ~ 91Chz2) + 2i (Kl +1)(QAChzl B gs(:hzz)

) ChuChzz - Chl2Chz1 ChuChzz - ChlZCth |a|(ChuChzz - ChlZCh21)
R = gSChlz B geChu + 20(1- Kl)(gl(:hIZ ~ 92Chu) + 2 (K1 +1)(93Chlz B gAChu)
ChuChzz - ChlzChz1 ChuChzz - Chlzchu |a|(ChuChzz - Chl2Chz1)

b b
J, =S f,(t)ef'e’ ™ ¥dt + R, i f,(t)e’'e O dt

g,Chy, — gochy, |, 201+ K,)(:Chy, — g;¢hy) | 2K, —1)(guchy, — gichy,)

SZ ) ChuChzz - ChlZChZ1 ChuChzz - ChlZChZ1 a(ChuChzz - ChlZChzl)
R = 0Chi—g:ch, 2la|(1+ K1)(gaChi = Gichy,) | 2i(k, ~1)(g,chy, — gachyy)
ChuChzz - ChlZCth ChuChzz - ChlZCth a(ChuChzz - Cthhzl)

b b
Ja =S f,(t)e’'e” " dt + Ryf f,(t)e’'e™ O dt

S, = eiahtan(e)[ gGCthecnzhsecG) _ g5ChZZecnlhsec(9) _ uleyh (20(1— Ks)(glchzzecnlhsece) _ gZCthecnzhsecG))
chachy, - chich, s chy,ch, - ofy,oh,,
N 2i (K3 + 1)(94CthecnghsecG) - gschzzecnlhsece)))]
|a|(ChuChzz —ch,chy)
RS _ eiahtan(e)[ gschlzecnlhsece) - gGChlleanhsece) B 'uleyh (Za(l_Ks)(gZChllecﬂzhsecG) - glchlzecnlhsece))
chachy, - chych, s chy,chy, — ohy,oh,
N 2i (K3 + 1)(gschlzecnlhsec(9) - g4chllecn2hsece)))]

|a|(ChuChzz - ChlZChz1)

b b
Ji = S, f,()e”e ™ Vdt+ R, [ f,(t)e”e ™ dt

iahtan(e)[ g7ChzzecnlhsecG) ~ QSChzleanhsece) _ I'lleyh 2|a|(1+ Ks)(gl(:hzzecnlhsece) B gz(:hzlecnzhsece))
ch,chy, —ch,chy, M ch,ch,, —ch,chy,

+ 2i (K, — 1)(93Chzzecnlhsece) ~ g4Chzlecnlhsece)))]

a(ch,,ch,, —ch,ch,,)

ananey GCP€™ ™) — g ch,e™ ™) _ pue” Zaf(l+K;)(g,ch,e™ ™ — g oh ™)
ch,ch,, —ch,chy, H chy,ch,, —ch,chy,

 2i(k; ~D(g,ch g™ - goh,e™ =)

a(ChnChzz - ChlZChz1)

S, =e

R, =e
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a®cosP)’(k, —3) —cni(k, +1) . _a’cosP)’(k, +1) —cni(k, - 3)

gs =cos@)] T 0s6) o sin(@)]
0. = cosp) " cose);(:;;—(9 ?;)+—i;n§ (:+D) oop) _O° <:os@>2(if(<g : i)n:)cng G T
0 = cosp) " cose)Z(Kg :)nl ST DUV cos@);(g;s—(9 r’;)+—i;nf(f<z D )]
. = coso) " cose)Z(Kg : :,)n - (=) ooy 4 O cose);(ggs—@ 3),>+—i;n§ (24D g oy

— : 2 Q11 Q12 Q13 Q14 m,x, sin(@)
Y11 - 1 B - Sz S3 - S4 o
(ia cos@) + m,sin(®))“( 9 S 9 + Q 9 )e

: ; 2 Q21 sz st Q24 m,X; Sin(6)
2 )" (- S, - S,)e
+(iocos@) + m, sin(®))“( Qsl+ 9 QS3+ 0 )e

H H 2 Q31 QBZ Q33 QSA msX, sin(@)
m, sin(® - S, - S,)e™ "
+(iacos@) + m,sin(@))“(——S, + S, e

; ; 2 Q41 Q42 Q43 Q44 mX, sin(6)
4 S - S, - S,)en
+ (iacos@) + m, sin(®))“( QSl+ Q53+ 9 )e

Q

Y,, = (iocos@) + mlsin(e))z(QQ“ R, - QQ12 R, + Q(S?’ R, - 1 R, )emsn®
*(10CoSE) +m, SN’ (R, + DR, = PR, + LR, )"
(acose) +m, sin@) (TR, - 2R, + LR, - LR jerer0
+(iocos@) + m, sin(e))z(—% R, +%R2 —% R, +% R,)em s
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- 2 2 H 2 H 2 Qll QlZ Q13
Y, = G/ 1 1 - 0 - S, S,
(sin®) cos@)(m; +a ) +im,a(cosP)” —sin(B)“)( 9 S 9 + Q

_ Q14 S )emlxlsin(e)
4

: 2 2 H 2 H 2 Q21 Q22 Q23
G -sin®)°)(- S, -
+(sin(@) cos@)(m; +a”) +im,a(cos@)” —sin(8)")( 02t 9> g S;

+ Q24 84 )emle sin(e)

H 2 2 H 2 H 2 Q31 Q32 Q33
¢ ~sin@® —x2g
+(sin(®) cos@)(m; +a ) +im,a(cos@)” —sin®))( 9 S Q + Q S
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APPENDIX B

a;; = real (111), ¢;; = real (constll), by; = imaginary (111), dy; = imaginary (const11)
a;; = real (112), ¢y, = real (const12), by, = imaginary (112), d;, = imaginary (const12)
a = —real (121), ¢;; = —real (const21), b;; = —imaginary (121), d;; = —imaginary (const21)

a; = —real (122), ¢;; = —real (const22), by, = —imaginary (122), d,,; = —imaginary (const22)
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Figure 1. Formulation of the Perturbation Problem.
(a). The Original Problem.
(b). The Elasticity Problem.
(c).The Mixed Boundary Value Problem.
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Figure 2. Methodology of the solution of the Perturbation Problem
(a). The Mixed Boundary Value Problem
(b). Infinite FGM Strip Without Crack
(c). Infinite FGM Plate With Crack
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Figure 3. Normalized mode | SIF at crack tip (a) for various 8¥80 deg. and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 4. Normalized mode Il SIF at crack tip (a) for various 8¥80 deg. and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 5. Normalized mode | SIF at crack tip (b) for various #80 deg. and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 6. Normalized mode Il SIF at crack tip (b) for various 8#80 deg. and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 7. Normalized mode | SERR at crack tip (a) for variousds8) deg. and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 8. Normalized mode Il SERR at crack tip (a) for various@%80 deg.
and center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 9. Normalized mode | SERR at crack tip (b) for various/80 deg. and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 10. Normalized mode Il SERR at crack tip (b) for various8%80 deg.
and center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 11. Normalized mode | SERR at crack tip (a) for varuk/c=2 and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 12. Normalized mode Il SERR at crack tip (a) for variguk/c=2 and
center of the crack is located at h/2, under loading of uniform normal stress.
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Figure 13. Normalized mode | SERR at crack tip (b)6=80 deg., same h and
fixed crack tip (a) and movement of crack tip (b), under loading of uniform
normal stress.
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Figure 14. Normalized mode Il SERR at crack tip (b)8e80 deg., same h and
fixed crack tip (a) and movement of crack tip (b), under loading of uniform
normal stress.
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Figure 15. Normalized mode | SERR at crack tip (a) 8eB0 deg., h/c=2,
constant crack length and various positions of crack, under loading of uniform
normal stress.
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Figure 16. Normalized mode Il SERR at crack tip (a) 8sB80 deg., h/c=2,
constant crack length and various positions of crack, under loading of uniform
normal stress.
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